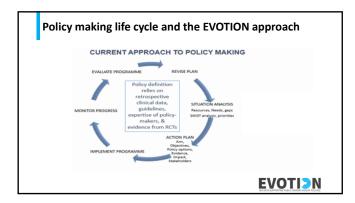
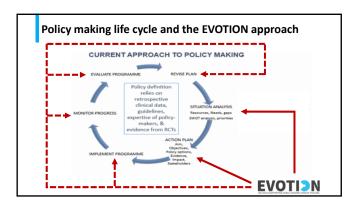
EVOTI N	
BIG DATA SUPPORTING PUBLIC HEARING HEALTH POLICIES	What the EVOTION Platform will offer to Policy Making
	Professor George Spanoudakis, CITY, UNIVERSITY OF LONDON
	Milano, 26 September 2018
This project has received furting from the European Union's Hurton 2002 research and innecessor programme under great agreement for 727321.	


Outline


- The need for public health policy in HL management
- $\bullet\,$ Public health policy making and the EVOTION approach
- EVOTION PHPDM models
- Example of PHPDM model
 - Goal & objectives
 - Actions
 - Data, analytics, criteria and modes of execution
 - Validation
- Who could use the EVOTION platform

_	-	_		
F1		ш	7	M
-	•	,	400	14

Need for public health policy making in HL management

- Hearing loss is a huge and increasing problem in the world, including high income countries.
- Good public health policy decisions
 - \bullet are essential in order to develop and implement effective and cost-effective programmes.
 - should be evidenced based.
- \bullet Policy monitoring and long term evaluation should also be evidenced based.

EVOTION Public Health Policy Decision Making Models

EVOTION PHPDM models specify:

- the **overall goal** and the **specific objectives** that public policy needs to address
- the range of possible actions (interventions) through which the goals/objectives of the policy can be achieved
- the **evidence** that needs to be gathered to make informed and plausible decisions about the actions (interventions)
- the processes for analysing and establishing the validity of this evidence
- the stakeholders who will consider the evidence and decide which actions
 (interventions) should be undertaken
- the **criteria** that should be used to make decisions based on evidence.

PHPDM Models Language (Goals and Decisions) **Constitution** **C

PHPDM Model Example

Prognosis of effectiveness of HA usage

Goal/need:

• Improve HA usage

Objectives:

- Average HA usage is at least 50% of max time
- Increase average HA usage by at least 30% of max time
- Increase subjective satisfaction of HA users by at least 20% of max value over a period of 3 years
- Enhance clinical practice to monitor potential factors that influence HA use and user reported benefit

PHPDM Example

Policy actions

- Provide **clinical practice guidelines** based on identified potential factors that influence HA use and user reported benefit
 - Supportive complementary actions:
 - Introduce audiologists' training on the use of new clinical practice guidelines
- Encourage HA vendors to consider **provision of alerts** with HA
- $\bullet\,$ Run informational campaigns targeted at patients with low HA usage profiles

PHPDM Models Language (Analytics) ***Control State | Control State | Control

PHPDM Models: Data Analytics and Evidence Data Analytic Tasks utilize Methods i.e., are based on the execution of Operators or Algorithms) Data Analytic Tasks take as input Data Sets a task must have at least one input data set Data Analytic Tasks produce as output Data Sets a task must have at least one output data set Output Data Sets may be Models produced by the analysis (e.g., a regression model or a J48 decision tree; the regression model and predicted values produced through statistical regression) Data Sets have Data Set Specifications A data set may be the input of more than one data analytic tasks A data set cannot be the output of more than one data analytic tasks Data Sets which are not the output of an operation or a algorithm must refer to data items in the EVOTION repository

PHPDM Models: Data Analytics and Evidence (cont'd)

Modes of executing analytics

- Upon request
- Continually
 - Shifting windows of data
 - Continually aggregated data
- Automatically triggered by changes in the data profile

F١	V	O	T	ľ	3	N
	w	v		ш	9	14

Example: Prognosis of Effectiveness of HA Usage

Data analytics and evidence

- Types of data
 - HL profiles (HL type & cause)
 - · use of HA controls for adjustments
 - patient medical and other profiles (e.g., age, education level, cognitive level, lifestyle)
 HA usage (periods of usage, data sent to EVOTION data repository)

 - satisfaction with HA usage GHABP
- Types of analyses
 ANOVA to detect factors with a statistically significant effect
 - Statistical regression to quantify effects of factors
 Neural networks to develop prognostic models
- Decision criteria

 - Decision criteria

 Identified factors that predict for 10% (?) increase in HA usage

 Identified factors that predict for 10% (?) increase in HA user satisfaction

 EVOTION

 Individual factors

Example: Prognosis of Effectiveness of HA Usage Data analytics and evidence: multiple linear regression to explore effect of age and PTA onto volume of HA data sent to EVOTION repository of pre-processing) Observations from 297 patients Multiple Regression analysis outcomes

	P	ΗP	DI	M	Exa	m	pΙ	e
--	---	----	----	---	-----	---	----	---

Stakeholders

- Regional ENT-specialists' Advisory Committee (in their role as prescribing the use of HAs);
- Regional Directorate for Social support (in their role as authorising financial support for purchasing HAs and performing follow-up on administration and use);
- Regional structures of the national Health Insurance Fund (in their role as funding clinical nathways):
- HA vendors/fitting experts (providing follow-up rehab);
- Patients' association regional repres. of patients controls for adjustments

PHPDM Example

Validation

- Comparison and validation of PHPDM analytic models and their results against literature (based on EVOTION text mining)
- Iterative and/or long term execution of analytic workflows to observe changes in evidence regarding the identified factors and their effects (EVOTION can be set up to do this)
- Set up of data acquisition mechanisms and analytics to generate evidence about the effects of policy actions, e.g.,
 - Effect of new clinical guidelines, campaigns and provision of alerts on HA usage and satisfaction

Who could use the EVOTION platform?

- Policy makers
- Clinicians
- Technology providers
- Patient associations
- EVOTION is generic platform that could be used for the set up, execution and monitoring of data acquisition, analytic and decision making processes of short and long term clinical studies

